Refine Your Search

Topic

Author

Search Results

Technical Paper

Quantifying the Pedestrian Detection Benefits of the General Motors Night Vision System

2005-04-11
2005-01-0443
This research compared driver detection performance with low-beam halogen headlamps supplemented by a General Motors production Night Vision system to low-beam halogen headlamps alone. This research was conducted with 18 participants between the ages of 40 and 70 years on a 3.2km (2-mile) section of closed road. Participants encountered seven scenarios, including crossing or standing pedestrians dressed in either white or black clothing. Additional scenarios included pedestrians in a curve and near an oncoming glare vehicle, as well a tire tread. Results indicated that the GM Night Vision system improved drivers' detection distances in nearly all pedestrian scenarios examined.
Technical Paper

Comparative Studies of Neck Injuries of Car Occupants in Frontal Collisions in the United States and in the Federal Republic of Germany

1981-10-01
811030
Parallel and coordinated accident studies were conducted in the United States and in the Federal Republic of Germany to determine the extent, the level, and the comparability of neck injuries in automotive accidents as reported in the National Crash Severity Study (NCSS), and the Association of German Automobile Insurers (HUK-Verband) files. To determine the comparability of the two data sets, three primary evaluation criteria were used: 1) the distribution of overall injuries by AIS level by various occupant parameters, 2) the risk of occupant AIS injury vs. delta V, and 3) the distribution of neck injuries by AIS for restrained vs unrestrained occupants. Frequencies and severities of neck injuries in car accidents were compared in parallel layouts between the two data sets in frontal, side and rear impact modes. In further breakdown the frontal impact file was separated into driver/passenger and male/female categories.
Technical Paper

Subcompact Vehicle Energy-Absorbing Steering Assembly Evaluation

1978-02-01
780899
This paper describes the results of a 2 year study into the field accident performances of two basic designs of energy-absorbing steering assemblies. The two basic designs are the axial-collapse type of steering column used in conjunction with a shear capsule and the self-aligning energy-absorbing steering wheel mounted on a nonstroking column. The study identifies major injury causation factors for these two types of steering assemblies. The analysis was performed on 161 accident cases selected for unrestrained drivers in frontal accidents in two vehicle types.
Technical Paper

Brake System Safety Analysis

1971-02-01
710593
An important new technique in safety engineering for complex systems is the fault tree analysis method. The results of a motor vehicle brake system safety analysis using the fault tree technique are described. The work is directed toward the identification and ranking of brake system failure modes which may be critical as accident causation factors. Safety criticality for each failure mode is defined as the product of probability of occurrence and severity of effect on vehicle control. Failure data for the brake system components are obtained from maintenance and repair records of a large automobile leasing fleet. An effect scale is developed using a method for pooling expert judgements to obtain the relative ranking of various brake faults as to accident causation potential. The fault tree structure is employed to combine probability and effect to obtain the safety criticality value of each fault.
Technical Paper

Light Vehicle Frontal Impact Protection

1982-02-01
820243
This paper addresses the protection of occupants in light vehicles. It presents data and techniques for identifying and measuring potential crashworthiness improvements that would mitigate injuries to occupants striking frontal interior components such as the steering wheel, instrument panel and windshield. Both restrained and unrestrained occupants can be injured by frontal interior components in crashes. The focus of this paper is on the unrestrained occupant. However, performance criteria and associated countermeasures will have to be developed considering the differences in the mechanisms of injury to both the restrained and unrestrained occupants. Work on the restrained occupant and the similarities and differences between both conditions remains to be considered. The paper presents information on the magnitude and types of injuries received from frontal interior components and on how the performance of these components and the vehicle structure affect the resultant injuries.
Technical Paper

Light Vehicle Occupant Protection - Top and Rear Structures and Interiors

1982-02-01
820244
This paper addresses serious, occupant crash injuries from: (a) head impacts with A-pillars, roof headers, and roof side rails, and (b) occupant entrapment and roof intrusion in rollover accidents. It also discusses two less frequent causes of injury: (a) fires in crashes, and (b) occupant ejection through the roof and rear window or rear doors. The paper estimates the relative frequencies of these types of injuries, classified according to the body area injured and the vehicle interior component responsible for the injury. Data for these estimates is from the National Crash Severity Study augmented by the 1979 Fatal Accident Reporting System data. Also, this paper addresses the potential for reducing the severity of these injuries in light motor vehicles, with particular emphasis on AIS 3 and more serious injuries.
Technical Paper

A Search for Priorities in Crash Protection

1982-02-01
820242
This paper presents the methodology and results of an analysis of the available information on motor vehicle safety which could be used to provide a basis for establishing priorities for future Government and private sector efforts directed at enhanced crash protection. The work was stimulated by several factors: (1) 5 years have elapsed since the National Highway Traffic Safety Administration (NHTSA) published a plan for motor vehicle safety research and development, (2) motor vehicles have changed substantially over the past several years, (3) the quantity and quality of accident data and vehicle crash performance information have increased dramatically over the past 5 years, and (4) Government policies and the amount of Government and private sector resources available for future efforts are changing.
Technical Paper

1974 Accident Experience with Air Cushion Restraint Systems

1975-02-01
750190
An air cushion restraint system has been available to the public on certain model passenger cars since January 1974. In response to this opportunity to obtain field experience, the National Highway Traffic Safety Administration has established a nationwide reporting network and investigative capability for accidents involving air-bag equipped cars. The reporting criteria for accidents require that the car be towed as a result of the accident, or that a front-seat occupant was injured, or that bag deployment occurred. The principal objective is to obtain the injury-reducing effectiveness of this restraint system in the total accident environment. This environment encompasses “towaway” accidents resulting in bag deployment and non-deployment. Definitive results are expected at the conclusion of the study. This paper summarizes the experience during the first year of the program, during which time the rate of accident occurrence was far less than originally expected.
Technical Paper

Two New Areas Concerning Side impact Protection for Passenger Car Occupants

1987-05-01
871114
In vehicle crash accidents, approximately 27% to 30% of passenger car occupant casualties are attributed to side impact accidents. The annual death toll in side impacts for passenger car occupants reached 9,000 in 1975 and 1976 and has been between 7,000 and 8,000 in the 1980's. Since 1977, the National Highway Traffic Safety Administration (NHTSA) and many other groups have conducted a significant amount of research on occupant side impact protection with emphasis on thorax injury reduction. Three important problem areas in the side impact are (1) thorax-to-side interior impact, (2) head impacts with A-pillar/roof rail components and (3) occupant ejection through side doors/windows. While the first problem area has been thoroughly studied, the remaining two areas are seldom discussed and less well understood. Therefore, they are relatively new areas to many people.
Technical Paper

Occupant Injury Patterns in Crashes with Airbag Equipped Government Sponsored Cars

1987-11-01
872216
In 1983, the National Highway Traffic Safety Administration (NHTSA) initiated two air hag vehicle fleet programs. The objective was to demonstrate that both original equipment and retrofit air bag systems operate in vehicles as intended. As of July 1, 1987, the two fleets together have accumulated over 200 million miles. Data are presented for 112 crashes involving air bag deployment in these government sponsored fleet vehicles in service between 1984 and July 1, 1987. Of the 112 drivers involved in the crashes, 103 sustained either no injury or only minor (AIS 1)[1]1 injuries. Of the nine remaining cases, six were AIS 2 and three AIS 3. To date, the limited data indicate that the air bag deployed as expected in all frontal crashes severe enough to require occupant restraint beyond that provided by the vehicle interior. Additionally, in collisions in which the air bag did not deploy, the crashes were of such low severity that no actuation was expected and none took place.
Technical Paper

The Role of Skull Fractures in Short Duration Head Impacts

1987-02-23
870321
Head injuries are considered a significant safety problem for vehicle occupants involved in vehicle crashes. Although medical literature on the subject is extensive, the emphasis is mainly on the clinical and studies frequently involve data samples that are not representative to the vehicle occupant population. Also, research efforts on head injury have focused on the head rotational acceleration mechanism. The effect of head contact on brain injuries has not been adequately acknowledged and there has been disagreement regarding skull fracture and its relationship to brain injury. The human head, being an extremely complex structure, has many independent injury modes which cannot be described satisfactorily by a single brain injury mechanism. Many individual pathophysiological disturbances to the skull and its contents together comprise head injuries.
Technical Paper

A Database for Crash Avoidance Research

1987-02-23
870345
A database derived from information obtained in state police accident reports has been developed to support problem identification and counter-measure development in crash avoidance research. This database is sufficient in size to permit analyses of the relationship between specific vehicle design characteristics and crash involvement. Preliminary analyses of this database suggest that is is comparable with the nation's crash experience.
Technical Paper

Fatality and injury Reducing Effectiveness of Lap Belts for Back Seat Occupants

1987-02-23
870486
The fatality and injury reducing effectiveness of Tap belts for back seat occupants is estimated by applying the double pair comparison method to 1975-86 Fatal Accident Reporting System and 1982-85 Pennsylvania accident data. Lap belts significantly reduce the risk of fatalities by 17-26 percent, serious injuries by 37 percent, moderate to serious injuries by 33 percent and injuries of any severity by 11 percent, relative to the unrestrained back seat occupant. Lap belts are primarily effective in nonfrontal crashes because the unrestrained back seat occupant is already well protected in frontals. Lap belted occupants have lower head injury risk but higher torso injury risk than unrestrained back seat occupants. This paper presents the views of the author and not necessarily those of the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Experimental Steering Feel Performance Measures

2004-03-08
2004-01-1074
This paper discusses techniques for estimating steering feel performance measures for on-center and off-center driving. Weave tests at different speeds are used to get on-center performances for a 1994 Ford Taurus, a 1998 Chevrolet Malibu, and a 1997 Jeep Cherokee. New concepts analyzing weave tests are added, specifically, the difference of the upper and lower curves of the hysteresis and their relevance to driver load feel. For the 1997 Jeep Cherokee, additional tests were done to determine steering on-center transition properties, steering flick tests, and the transfer function of handwheel torque feel to handwheel steering input. This transfer function provides steering system stiffness in the frequency domain. The frequency domain analysis is found to be a unique approach for characterizing handwheel feel, in that it provides a steering feel up to maximum steering rate possible by the drivers.
Technical Paper

Comparison of Vehicle Structural Integrity and Occupant Injury Potential in Full-frontal and Offset-frontal Crash Tests

2000-03-06
2000-01-0879
The frontal crash standard in the USA specifies that the full front of a vehicle impact a rigid barrier. Subsequently, the European Union developed a frontal crash standard that requires 40 percent of the front of a vehicle to impact a deformable barrier. The present study conducted paired crashes of vehicles using the full-frontal barrier procedure and the 40 percent offset deformable barrier procedure. In part, the study was to examine the feasibility of adding an offset test procedure to the frontal crash standard in the USA. Frontal-offset and full-frontal testing was conducted using both the mid-size (50th percentile male Hybrid III) and the small stature (5th percentile female Hybrid III) dummies. Five vehicle models were used in the testing: Dodge Neon, Toyota Camry, Ford Taurus, Chevrolet Venture and Ford Contour. In the crash tests, all dummies were restrained with the available safety belt systems and frontal air bags.
Technical Paper

Deployment of Air Bags into the Thorax of an Out-of-Position Dummy

1999-03-01
1999-01-0764
The air bag has proven effective in reducing fatalities in frontal crashes with estimated decreases ranging from 11% to 30% depending on the size of the vehicle [IIHS-1995, Kahane-1996]. At the same time, some air bag designs have caused fatalities when front-seat passengers have been in close proximity to the deploying air bag [Kleinberger-1997]. The objective of this study was to develop an accurate and repeatable out-of-position test fixture to study the deployment of air bags into out-of-position occupants. Tests were performed with a 5th percentile female Hybrid III dummy and studied air bag loading on the thorax using draft ISO-2 out-of-position (OOP) occupant positioning. Two different interpretations of the ISO-2 positioning were used in this study. The first, termed Nominal ISO-2, placed the chin on the steering wheel with the spine parallel to the steering wheel.
Technical Paper

Reducing the Risk of Driver Injury from Common Steering Control Devices in Frontal Collisions

1999-03-01
1999-01-0759
Steering control devices are used by people who have difficulty gripping the steering wheel. These devices have projections that may extend up to 14 cm toward the occupant. Testing indicated that contact with certain larger steering control devices with tall rigid projections could severely injure a driver in a frontal collision. In order to reduce this injury risk, an alternative, less injurious design was developed and tested. This design, which included replacing unyielding aluminum projections with compliant plastic ones, produced significantly lower peak contact pressure and less damage to the chest of a cadaver test subject, while maintaining the strength necessary to be useful.
Technical Paper

Driver Crash Avoidance Behavior with ABS in an Intersection Incursion Scenario on Dry Versus Wet Pavement

1999-03-01
1999-01-1288
The National Highway Traffic Safety Administration (NHTSA) has developed its Light Vehicle Antilock Brake Systems (ABS) Research Program in an effort to determine the cause (s) of the apparent increase in fatal single-vehicle run-off-road crashes as vehicles undergo a transition from conventional brakes to ABS. As part of this program, NHTSA conducted research examining driver crash avoidance behavior and the effects of ABS on drivers' ability to avoid a collision in a crash-imminent situation. The study described here was conducted on a test track under dry and wet pavement conditions to examine the effects of ABS versus conventional brakes, ABS brake pedal feedback level, and ABS instruction on driver behavior and crash avoidance performance. This study found that drivers do tend to brake and steer in realistic crash avoidance situations and that excessive steering can occur.
Technical Paper

Driver Crash Avoidance Behavior with ABS in an Intersection Incursion Scenario on the Iowa Driving Simulator

1999-03-01
1999-01-1290
The National Highway Traffic Safety Administration (NHTSA) has developed its Light Vehicle Antilock Brake Systems (ABS) Research Program in an effort to determine the cause (s) of the apparent increase in fatal single-vehicle run-off-road crashes as vehicles undergo a transition from conventional brakes to ABS. As part of this program, NHTSA conducted research examining driver crash avoidance behavior and the effects of ABS on drivers’ ability to avoid a collision in a crash-imminent situation. The study described here was conducted on the Iowa Driving Simulator and examined the effects of ABS versus conventional brakes, speed limit, ABS instruction, and time-to-intersection (TTI) on driver behavior and crash avoidance performance. This study found that average, alert drivers do tend to brake and steer in realistic crash avoidance situations and that excessive steering can occur. However, this behavior did not result in a significant number of road departures.
Technical Paper

Reverse Engineering Method for Developing Passenger Vehicle Finite Element Models

1999-03-01
1999-01-0083
A methodology to develop full-vehicle representation in the form of a finite element model for crashworthiness studies has been evolved. Detailed finite element models of two passenger vehicles - 1995 Chevy Lumina and 1994 Dodge Intrepid have been created. The models are intended for studying the vehicle’s behavior in full frontal, frontal offset and side impact collisions. These models are suitable for evaluating vehicle performance and occupant safety in a wide variety of impact situations, and are also suitable for part and material substitution studies to support PNGV (Partnership for New Generation of Vehicles) research. The geometry for these models was created by careful scanning and digitizing of the entire vehicle. High degree of detail is captured in the BIW, the front-end components and other areas involved in frontal, frontal offset and side impact on the driver’s side.
X